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ABSTRACT

Although the advent of fast and inexpensive parallel computers has ren-

dered numerous previously intractable calculations feasible, many numerical

simulations remain too resource-intensive to be directly inserted in engineer-

ing optimization efforts. An attractive alternative to direct insertion considers

models for computational systems: the expensive simulation is evoked only to

construct and validate a simplified input-output model; this simplified input-

output model then serves as a simulation surrogate in subsequent engineering

optimization studies. We present here a simple "Bayesian-validated" statisti-

cal framework for the construction, validation, and purposive application of

static computer simulation surrogates. As an example, we consider dissipation-

transport optimization of laminar-flow eddy-promoter heat exchangers: paral-

lel spectral element Navier-Stokes calculations serve to construct and validate

surrogates for the flowrate and Nusselt number; these surrogates then repre-

sent the originating Navier-Stokes equations in the ensuing design process.

1This work was supported by DARPA Grant N00014-91-J-1889; ONR Grant N00014-

90-J-4124; ONR Grant N00014-89-J-1610; and by the National Aeronautics and Space Ad-
ministration under NASA Contract No. NASl-19480 while the author was in Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

Large-scale numerical calculation, such as fluid flow simulation, is an increas-

ingly significant component of engineering and scientific analysis. However,

despite recent advances in both algorithms and architectures, many relevant

individual calculations still require many hours of expensive supercomputer

time. As a result, direct insertion of these resource-intensive simulations as

"subroutine" calls in particular design and optimization studies is typically

not viable. First, the number of objective-function evaluations required to

find an optimal, or even reasonable, solution to an optimization problem will

not be known a priori. Direct insertion of expensive simulations may ex-

haust allocated resources before interesting -- or even feasible -- solutions

are obtained. Second, effective engineering design and optimization processes

are evolutionary, with goals and constraints continually modified to reflect

newly available information or specifications. Direct insertion of large--scale

calculations strongly inhibits adaptability: with each revision of objectives,

previous computations must be discarded, and a new sequence of expensive

simulations must be initiated. Third, the value of expensive numerical simu-

lations can be greatly enhanced by proper incorporation of prior information

derived from collateral analytical, experimental, or heuristic investigations.

Direct insertion of simulation results renders model fusion and validation dif-

ficult. Fourth, most design and optimization exercises are multidisciplinary

in nature [1], involving numerous relatively distinct fields of physical inquiry

(e.g., fluid mechanics, solid mechanics, physical chemistry). Direct insertion

of diverse simulations affords little opportunity to accomodate -- or exploit

-- differing degrees of complexity and sensitivity. In summary, if large-scale

computation is to graduate from analysis to synthesis, new paradigms are

required.

One attractive solution to the simulation-integration impasse considers

models for computational systems: the expensive, large--scale simulation, de-

noted A4 °, is evoked only to construct and validate a simplified compu-

tational model, denoted .M; this simplified model, .M, then serves as an

inexpensive surrogate for .Ado in subsequent engineering applications. The

simplified model A4 can be evaluated effectively ad infinitum, can support

a large class of objective functions, can readily accomodate extra-simulation

information, and can be easily incorporated into multidisciplinary design

studies. The application of models for computational systems does, however,



raisenewquestions,in particular asregardspurposiveness:to what extent is
the designproceduremisdirected,or proposeddesignsmispredicted,by the
introduction of approximatesimulation surrogates?

In this paper we develop-- and apply -- a complete surrogate frame-

work for optimization based on the simple validation concepts presented in

[2]. More broadly, the work is founded upon several related streams of in-

quiry. From system identification (control) theory [3-6] we borrow the notion

of algorithmic logical empiricism, in which available data is systematically

incorporated into the model construction and validation processes; from the

design of experiments [7] we appreciate the need for sampling heuristics and

response surfaces; from statistical prediction rules and artificial neural net-

works [8-11] we adopt the concept of "construct and validate" -- or "train

and test" -- data partitions; from the theory of machine learning [12,13] we

appropriate the "probably approximately correct" framework; from Monte

Carlo methods [14] and the classical equivalence of measure and probability

[15] we derive our sampling procedures; from nonparametric statistical theory

[16] we deduce our statistical error estimates; from scattered-data method-

ology [17] we derive our model-construction procedures; and from statistical

quality-control theory [18,19] we adapt relevant a posteriori reliability con-

cepts. Lastly, our work, in philosophy, is most closely aligned to earlier

seminal efforts in statistical simulation surrogates [20-23], in which, first,

the need for surrogates is motivated, second, the special role of statistical

statements is recognized, and third, the idiosyncrasies of (largely determinis-

tic) computer experiments are identified; other "non-surrogate" statistically

motivated approaches to the incorporation of expensive simulations into op-

timization studies [24] are also relevant to our study.

The paper is organized as follows. In Section 2, we describe the op-

timization framework in which surrogates will ultimately be applied, dis-

cuss the general class of subproblems for which our surrogate methods are

most appropriate, and introduce the particular laminar-flow eddy-promoter

heat exchanger optimization study that will serve as our detailed illustra-

tion. Finally, we reiterate the motivation for the surrogate approach, for-

mally define the surrogate problem, and describe the broad methodolog-

ical guidelines that effective surrogate procedures should honor. In Sec-

tion 3, we present our modelling methodology, treating both validation and

construction-validation; the algorithms and error estimates are described,

and results for the eddy-promoter heat exchanger are presented. In Section



4, we consider the incorporation of surrogate techniques into the full opti-

mization framework, with particular focus on purposiveness and a posteriori

analysis; the surrogate-based optimization approach is illustrated for the

eddy-promoter heat exchanger problem. In Section 5, we consider several

extensions to the surrogate methodology: classification maps; databoards;

and multiple-output estimates. Lastly, in Section 6, we briefly state our con-

clusions. (For clarity and self-containedness, we include here some material

already discussed in [2], in particular as regards the validation procedure;

however, the optimization framework is new, as is the treatment of a "real"

application, that is, a problem which truly requires a surrogate approach.)

2 General .Problem Statement

2.1 Optimization Framework

In this paper we develop simulation surrogate techniques designed to func-

tion as part of a larger optimization study: we therefore require a general

optimization framework in which to interpret our results. We emphasize that

this paper is not concerned with more classical optimization issues such as

optimality conditions and mathematical programming techniques [25]; we

assume that our optimization problems are well posed, and that procedures

exist to find at least local, and preferrably global, optima.

We first introduce a bounded, lower semi-continuous objective function,

(I)

where p is the optimization design M-vector, f/ C _M is the admissible

(closed) domain for E, or "design space," k is the optimization definition N-

vector, and A C _r_is the admissible domain for _. The _ vector comprises

coefficients which, as regards the optimization process, may be treated as

parameters. Our minimization problem is thus: Find ¢_n(__),p'(_) such

that

= < e n, (2)

where _n(_) and p*(__) are the minimum and minimizer, respectively. We

explicitly introduce the dependence of the mirfimum and minimizer on _ to

underscore that our optimization problem is, in fact, a.family of optimization



problemsparametrized by 4. We define (I)_,,(4) as a global minimum to
emphasizethat our surrogatetechniquesare intendedto servenot only final,
local optimization studies,but alsoinitial, exploratory designefforts.

We are interestedin a particular classof optimization problemsin which
the objective function can bewritten in termsof a subproblem,

¢(_; 4) = ¢(#.(p);_;__). (3)

More explicitly, we can think of evaluating ¢b(p; 4) as

pEfi - -'--_ sE

¢(p; 4) = ¢(_s;_;4),

where p_.is the subproblem input M-vector, f/is the subproblem input do-

main, s_. E gt t¢ is the subproblem output vector, S(p_.) is the subproblem
input--output function, and L_(f_) is the space of bounded measurable func-

tions over the domain i2. (We believe that most of our results require only

that S(p) be in LCC(ft)t"; however, all mathematics in this paper must be

considered purely formal pending complete hypotheses and serious proofs.)

We shall further assume that the deterministic subproblem input--output

function, _.(p_.) :/R M --,/R K, is expressed as a functional, ,/, applied to a field

U(x, t;/9,
#.(_) = ,t(U(., .; p);tt), (4)

where U(x, t; p) satisfies the initial-boundary-value field subproblem,

M aU
t, _7 - At,(U) (5)

U(x,t=0;/9 = U°(x;_). (6)

Here jr : X x N --4 gt t_" is the output functional; X is the function:space in

which the field subproblem S0iut_on U(x, t; p) resides; x and t are space and

time, respectively; Mp and A t, are deterministic spatial differential operators

(and associated boundary conditions) parametrized_by the input vector p;

and U°(x; p) is the initial condition on U(x, t; p_).

We give here a very simple illustration from incompressible fluid dynamics

intended to render the abstract subproblem framework more comprehensible.
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To wit, we considerthe drag coefficient for flow past a cylinder, in which
we identify: p as a single input (M = 1), the Reynolds number; f_, the

input domain, as the Reynolds-number interval of interest; s as a single

output (K = 1), the drag coefficient; S(io) as the drag coefficient-Reynolds

number relationship; J as the time-averaged streamwise component of the

integral of the stress-normal product over the cylinder surface; U(x, t; p) as

the {velocity, pressure} pair; Mp and Ap_ as the incompressible Navier-Stokes

system, in which the Reynolds number enters as a parameter. (Note that, for
reasons described in Section 2.2, we will typically not be interested in either

time or space as an input: all temporal and spatial dependence is eliminated

by J, either by evaluating the subproblem field at a particular point, by

averaging over time or space, or by considering properties of asymptotic,

steady, or stationary solutions. For this simple example, we perform temporal

and spatial averages of temporally stationary solutions.)
We make four final remarks. First, we have equated the input variables

and the design variables (and hence the input space and the design space);

more generally, the input variables may comprise only a subset of the design

variables, p, but may also include certain definition variables, _A. The former
would be fortunate, reducing the size of the subproblem; the latter would be

unfortunate, reducing the flexibility of a single surrogate to readily address

several different optimization problems. Second, we presume that the field

subproblem must be solved numerically, but that, for the purposes of this

paper, all numerical errors are sufficiently small that we may equate the nu-

merical and exact solutions. Third, as shall be discussed in Section 2.2, we

shall be particularly interested in subproblems for which _.(/_) is computa-

tionally expensive to evaluate (that is, the field subproblem is difficult); we

shall assume, however, that, once _ = ,S(p) is known, the objective function

¢([; h) can be inexpensively evaluated as ¢(_; p; h). Fourth, for the optimiza-

tion problems we consider, the computational complexity -- and the greatest

opportunity for improved efficiency -- resides not in the search process, but

in the objective function evaluation.

2.2 Class of Subproblems of Interest

The surrogate approach is particularly appropriate for optimization problems

in which the subproblem Satisfes the following three "complexity conditions."



Condition CI: The S(p) are expensive to evaluate in terms of computer costs,

elapsed time, or human effort. This condition may appear to be transitory,

given the continual and rapid decrease in computational times and costs [26].

We claim, however, that as computational capacity increases, problem size

will also grow to accomodate: increased (perhaps finally adequate) resolu-

tion; higher fidelity mathematical models; increased physical complexity of

new technologies. D

Condition C2: Sharp regularity information on the S(p), such as a Lipschitz
condition,

1__(;O2 ) -- __(pl) I _ CL[;O,2 -- ;Oll

is difficult to obtain and problem-specific. This implies, in effect, that very

little regularity can be assumed of the input-output function S(p).D

Condition C3: Knowledge of ,5"(p) at one input value, ;ol, is of minimal com-

putational value in evaluation of S(p) at a second input value, ;O_: subproblem
evaluation enjoys no computational economy of scales. This condition pre-

cludes certain {subproblem; input; diagnostic} triples, such as { .; time; • },

and {steady Navier-Stokes; Reynolds number; Newton continuation}. In

both these cases -- assuming sufficient regularity -- later calculations can

exploit earlier results in order to reduce computational effort. (As we are

not considering time as an input, our surrogates are "static;" this does not

imply, of course, that tlie field subproblem involves only steady phenomena,

nor that the outputs may not contribute to a time--dependent model.)D

In colloquial terms, for a subproblem which satisfies these three conditions:

we can not afford to generate subproblem solutions for many different input

values (C1,C3); we can not consider the subproblem solutions at a few input

values to be representative of the entire input space (C2); we can not sim-

plify subproblem evaluations by exploiting special features (such as locality)

of the parent optimization problem (C2,C3). We believe that, unfortunately,

there are many problemswhich approximately satisfy these conditions.

Remark on Physical Experiments. It is of interest to ask why our meth-

ods are not as appropriate for experimental investigations as for computa-

tional systems, and, conversely, why experimental data analysis techniques
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are not directly appropriate for computational systems. Considering the

former, first, quite apart from noise, physical (in particular continuum me-

chanics) experiments often do not satisfy condition C3; for example, once

an expensive flow apparatus is configured, there are great economies of scale

in (in fact, opportunity costs incurred in not) obtaining data for a large

number of ftowrates, rather than just a few. This is because much experi-

mental equipment is problem-specific, amortized over only a particular class

of inquiries, and because elapsed time is not a serious consideration in many

(though not all) laboratory environments. Second, despite recent advances in
transducers and imaging, experimental data at a particular input value, p', is

already greatly reduced with respect to analogous numerical data; whereas
raw simulation data resident on a databoard (see [2] and Section 5) can

be subsequently processed to produce a wide range of different outputs, ez-

perimental data can serve only those applications requiring the few outputs

selected in the originating investigation.

Turning now to why well-developed experimental data analysis techniques
are not directly applicable to simulations, first, many experimental inquiries

assume significant noise levels. In contrast, although computational inquiries
do contain dif_cult-to-quantify factors (e.g., resolution, incomplete iteration)

that may perhaps be gainfully interpreted as noise, these factors tend to be

both relatively small and largely controllable. Many experiment-design tech-

niques developed to reduce or understand uncontrolled factors (e.g., blocking

and randomization [7]) are thus largely irrelevant in the computational arena

[21]. Second, many experimental surrogate (e.g., response surface) methods

are premised upon assumptions of both smoothness and locality (e.g., linear
models, fractional factorial designs [7]); although these assumptions may be

necessary for noisy experiments, deterministic simulations can benefit from
less restrictive hypotheses.n

2.3 Eddy-Promote r Heat Exchanger Example

2.3.1 The Optimization Problem

As our physical problem we consider two--dimensional laminar flow and con-

vective heat transfer in the eddy-promoter heat exchanger shown in Figure

1. In overview, the eddy-promoter channel comprises a two--dimensional

(infinite in _3) plane channel with plate separation (in z2) 2h, geometrically



interrupted by an infinite periodic array of insulatin_ cylindrical eddy pro-
moters of bottomwall-to--cylinder spacing fi, radius R, and pitch (cylinder-

to--cylinder kl-separation) L. Heat enters the channel through an isother-

mal bottom wall maintained at temperature T1 (representing, for exam-

ple, a highly conducting plate housing electronic components) and leaves

the channel through an isothermal "cold" top wall maintained at tempera-

ture T0. A fluid flow driven by an imposed pressure gradient, df_/dYcx6l

and excited to significant cross-stream transport by the eddy-promoters --

serves to reduce the bottom wall-to-top wall thermal resistance. We are

interested in determining that eddy-promoter placement and radius which

minimizes pumping power (e.g., operating cost) and eddy promoter volume

(e.g., materials cost) while simultaneously maintaining a temporally and spa-

tially averaged bottom-wall heat flux (e.g., electronic component density),

< F >, not much less than < /7 >,,o,_. In more quantitative terms, we

wish to: minimize _1 × the primping power + _ ×/_2+ /_3× a penalty if

(< F >,_o,_ - < -P >)/A < F >,_o,_ > 0; with respect to eddy-promoter

placement h and radius R; for various objective-function weights fll,/_2 and
33 and thermal loads </_ >nora.

(Notational aside: dimensional variables shall carry carats; length, veloc-

ity, and time will be nondimensionalized with respect to h, d_/d3clh2/2_,
mA

and 2_,/d_/d3clh, respectively; temperatur.._e will be measured relative to T0
and nondimensionalized with respect to AT = T1 - 7_0. The incompressible

working fluid is characterized by a constant density, b, kinematic viscosity, b,

thermal conductivity, k, and thermal diffusivity, &. The domain associated

with one periodicity length of the channel (arbitrarily positioned as shown

in Figure 1) will be denoted /9, with the bottom and top walls denoted /_1

and B0, respectively, and the eddy-promoter surface denoted/_c. A generic

point in b is (3:1, _2); the fluid velocity, pressure (perturbation from the im-

posed linear field), and temperature are written as d = _'qel + h_2, i5', and

T, respectively, where (el,e2) are the unit vectors associated with the two

coordinate directions. Angular brackets, < -. >i refer to time average with

respect to a temporally s(ationary state.)

We can pose the (nondimensional) eddy-promoter heat exchanger opti-

mization problem as an instantiation of the general framework of Section

2.1: _, ¢ _ CEP, CEP; M _ M _p (5) 2, the number of design variables;

_ p_" - {(R_,(P_),a,R,(L)}i f_ _ 6_ = {.1 _< a < 1,.05 < R <

a - .05} (see Figure 2); N _ N EP = 4, the number of definition variables;



A _-* ,_Er _ {_1,_2,_3,_}; A _ A "P = _.. Here Re and Pr denote the

Reynolds number and Prandtl number, defined as Re = -_h.3/2_2 and

Pr = _,/&, respectively, and x --< _" >,_o_ 2h./k'_"T is the nondimensional

thermal load. Note that for the purposes of our optimization problem the

Reynolds number, Prandtl numbeL and eddy-promoter pitch are fixed at

Re = 300, Pr = 1, and L = 6.666, respectively, leaving only two design

variables, the nondimensional eddy promoter placement, a, and radius, R;

we have indicated parenthetically that a more general optimization problem

might involve five design variables, in which Re, Pr, and L are also free to

vary.

As our objective function we take

¢_r(a, R; _P) = CE_(Q(a,R), Q(a, R); R,(Re);_ EP) (7)

where

CEP(g,q;R,(Re);Zl,&,_3, x)=_l(Re)2g+&R2+_37-l(1-q/_). (8)

Here g = Q(a, R) is the time-averaged flowrate through the channel,

_(a,R) = _ < ul > dx, (9)

and q = _(a, R) is the time-averaged Nusselt number,

QCa, R)=< t > 2_/k_'T. (10)

k 0i'From<P>=_f& <- _>d+l, it follows that

2 fs OTQ(a,R) = -L , < -Oz--_ > dx, . (11)

It is readily shown that, as required, (Re)_g is the pumping power per peri-

odicity length per unitdepth (nondimensionalized by 4_;,3/h3), and 1 -q/_

is (< F >,_o= - < _' >)/ < F >,_o=. The penalty function 7"/(z) is chosen

to be _(z) - H(z)z 2, where H(z) is the Heaviside distribution. It is crit-

ical to note that, even in a real (not just illustrative) design exercise, the

particular, initial, form for the objective function is not overly important,

as surrogate techniques are designed to permit significant variation in the

objective function at low marginal cost. Indeed, it is often only through ob-

serving optima and varying the objective function that design-goal intuition

is clearly articulated.

9



2.3.2 The Eddy-Promoter Subproblem

We next identify our eddy-promoter subproblem with the general subprob-

lem described in Section 2.1: M _ M _ = (5) 2, the number of inputs;/_

_v =- {(Re),(Pr),a,R,(L)}i 12 _ fW" = {.1 _< a _< 1,.05 _< R _< a- .05};

K _ K zP = 2, the number of outputs; _. _ _.zv _ {g,q}; _.([) _ _fP(p) _

{_(P),Q(P)}; J _ {_fn <ul > dx,_fs, < -_ > dx,}; U _ {u,p',T};
Mp, Ap s--, Navier-Stokes and forced con ection. More explicitly, the Navier-

Stokes-field subproblem for (u(zl, z2, t),p'(xl, x2, t)) is given by,

cgui cgul cgp' 1 c92u_ 2

0"7 + uJ-_zj = -Ox-"_i + Recgx_cgx, + _ee 8'1 in D (12)

0ui

oqz----/= 0 in D (13)

u = 0 onBoUBtUBv (14)

(u,p')(x, + mL, x2,t) = v,n z, (15)

and the forced-convection energy equation for T(xl, z2, t) is given by,

OT c3"I' 1 _T

+ uJ_x___ : RePr cgzjcgz_ in D (16)0-7

r = 0(1) onBo(B,) (17)
07"

0"'n" = 0 on Be (18)

T(xl + mL, x2, t) = T(zl,z2, t) Vm E Z. (19)

Here _Sij is the Kronecker-delta symbol, c9/c9n denotes differentiation in the

direction of the boundary normal, Z is the set of integers, Re = 300 and Pr =

1, free indices range over {1,2}, and summation (E_) over repeated indices is

assumed. Initial conditions are not important since,at this Reynolds number,

only a single attractor appears to exist for all {a, R} E f_,r.

We solve the Navier-Stokes and energy equations with the NEKTON code

on the Intel iPSC/860 multiprocessor. The numerical method comprises:

fractional timestepping schemes [26-28]; spectral element spatial discretiza-

tions [29]; and parallel [26,30] deflated [31] multilevel conjugate gradient [28]

iterative solution procedures. A typical calculation proceeds by: specification

of {a, R}; automatic spectral element mesh generation from several skeletal

10
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templates;automatic parallelpartition; integration in time until a temporally
stationary state is achieved;evaluationof the requisiteoutput functionals.
The spectral element templatesare constructedto permit relatively undis-
torted meshes and adequate resolution even for extreme cylinder placements

and sizes. We have confirmed the mesh independence of our calculations

[32], and have verified our results, where possible, with other numerical pre-

dictions and experiment [33-37]. For a typical {a,R} E flEp, roughly $75

and 6 16-processor hours are needed to reach the steady or steady-periodic

state required to evaluate the flowrate and Nusselt number; note that each

subproblem evaluation would cost as much as $750 on a single-processor

supercomputer [26].

2.3.3 Flow Phenomena

We aim to find #_n(A ) and pzp.(_.zr) _ {a'(AzP), R'(__ zr ) } such that, V{a, R }
,-- _'/zp _ZP tAgP_ _ZPlG'fA zP_ R'fA zP\. A _7_ < _EF(G, R; AzP). We empha-

, min_.-- ] -" _ _,-- ]' _,-- ]'-- ] --

size that this design problem is not local: the triangular admissible design

space, f_EP, shown in Figure 2, admits virtually all geometrically possible

cylinder placements and radii. More importantly, different flow phenomena

occur in different regions of the design space. Figure 3 depicts the isotherms

for three representative {a,R} points in fl_; for a _ .5 unsteady steady-

periodic supercritical Tollmien-Schlichting wall-mode channel waves obtain

(Figure 3a); for large R steady wavy flows predominate (Figure 3b); for very

large R the flow is effectively blocked (Figure 3c) [32]. (Recall that the

Navier-Stokes calculation is at fixed pressure gradient, not fixed flowrate.)

This paper is not concerned with the details of eddy-promoter flows ex-

cept to the extent that these details illustrate essential aspects of the surro-

gate procedure. Readers interested in more details on dissipation-tmnsport

optimization of eddy-promoter systems are referred to [32,34-36]. These

studies treat more realistic boundary conditions (e.g., in which the heat is

carried away by the fluid flow) and optimization objective functions, and ad-

dress a wider range of both laminar flows (numerically and experimentally)

and transitional and turbulent flows (experimentally). However, extensive

optimization with respect to geometric inputs (e.g., a and R) has not been

undertaken, due to the expense (in this case, in both the numerical and

experimental contexts) associated with system modification and re-analysis.

Readers interested in more details on the flow physics, in particular the hydro-

11



dynamic stability, of eddy-promoter (and related) flows may consult [32,35-

38]; these papers interpret eddy-promoter bifurcations as the interaction of

simpler-geometry shear, cylinder, and channel instabilities. Recent quiet ex-

periments and inflow-outflow numerical simulations [37] indicate that the

initial instability is convective, not absolute; however, noisier experiments

[36] agree quite well with periodic calculations, suggesting that in engineer-

ing applications the assumption of spatial periodicity may be acceptable for

sufficiently long channels.

We claim the eddy-promoter subproblem satisfies the three conditions of

Section 2.2: the computation is expensive and time-consuming (C1); bifur-

cations preclude sharp regularity estimates (C2); complex time--dependence

and geometry variation precludes continuation methods (C3).

2.4 The Surrogate Approach

In the "direct insertion" approach to simulation-based optimization, the ob-

jective function _(p, _) is evaluated, for each candidate p, as ¢(s; p; _), where

Mp,Ap J _Kp _ g_ -=--,-U(x, t; p) _ s _ .
%

_.(p_)

The disadvantages of this approach are described in the Introduction: the

number of evaluations of ¢(P,h) is not known a priori _ resources may be

exhausted before a sensible design is proposed; simulations evoked in a first

optimization study with objective function _(p.,A I) will beof limited use in a

second optimization study with objective function ¢(p, _2) __ design adapt-

ability is frustrated; and systematic fusion of simulation results with prior

analytical, heuristic, or experimental information is, at best, difficult. In

short, it is difficult to perceive of a day-long thousand-dollar Navier-Stokes

simulation as a function call from a mathematical programming routine.

In the surrogate alternative, the subproblem simulation is evoked only

to construct and validate a simplified input--output model, _(p): fl _ _a',

which is intended to approximate __(p.) over the input domaln-_. This sim-

plified input-output model then serves as a simulation surrogate in subse-

quent optimization studies, that is, ¢(p,_) = ¢(_S(p);p_; _) is replaced with

¢(_-(P.);_P;-_) = _(P,h): _(p,_), not ¢(p_.,_), is minimized. Given the as-

sumptions of Section 2.1, _(p,)_) can be inexpensively evaluated for any

12



candidatep as ¢(_; p; __), where

_ _ fl ___) _._ R_.

The surrogate problem can thus be stated as follows: Given a limited (or

even fixed) number of appeals (recall conditions C1 and C3) to a largely

uncharacterized (recall condition C2) but deterministic function, _.(p); Find

a simple but validated approximation to _.(p) over fl, _.(p), which a) con-

servatively but effectively exploits prior information, and b) can be gainfully

incorporated into design and optimization studies.

The advantages of surrogates are manifold: surrogates are, by construc-

tion, inexpensive, and can be evaluated ad infinitum _ premature termina-

tion of the optimization procedure will not be required; a single surrogate

can support a large a-family of related objective functions -- adaptive, non-

incremental modification of design criteria and specifications is encouraged;

surrogates can readily incorporate prior extra-numerical information con-

cerning not only regularity, but also form -- thereby reducing the computa-

tional burden. The primary disadvantage of surrogates is the introduction of

new errors into the optimization process due to the additional level of approx-

imation, ¢(_.(p); p; 2_) _ ¢(_.(P); P; _.); this "purposiveness" issue is discussed

in depth in Section 4. The many advantages (and significant disadvantage)

of surrogates have long been recognized: computational scientists typically

search for "insight not numbers"; engineers often exploit reduced--order mod-

els. However, with the exception of relatively recent work [20-23]: the sur-

rogate concept is rarely explicitly articulated; application of the surrogate

concept is typically ad hoc; and surrogates are not usually accompanied by

useful error estimates. It is the latter shortcomings that we aim to partially

mitigate.

The surrogate problem statement and the complexity conditions C1, C2,

and C3 suggest several broad methodological guidelines. First, from condi-

tions C1 and C3, we require error estimates for a fized number of function

evaluations; this implicates a statistical approach, in which uncertainty can

be precisely accomodated. Second, from condition C2, we must presume that,

in the general case, we know relatively little about our input--output func-

tion; this implicates a nonparametric statistical approach. Third, from con-

ditions C1 and C2, design sensitivity derivatives, though a powerful tool for

both gradient-based minimization and post--optimization sensitivity analyses

13



[1,39,40], may not be sufficient: more global, general models for objective-

function approximation must be admitted. Fourth, from conditions C1, C2,

and C3, we deduce that neither a priori nor a posteriori regularity-based

approximation and estimation techniques are effective: we can not hope to

be asymptotic (C1); we will have very little insight into the proper norm,

form, or constants of approximation errors (C2); a posteriori error analysis

based on local subproblems or extrapolation will not be computationally vi-

able (C3). These considerations suggest that new error norms are required.

Fifth, from condition C3, we can assume at least partial decoupling of the

parent optimization problem and the expensive subproblem; although results

of the former will certainly affect the region in which we choose to examine the

latter, the two tasks remain computationally relatively independent. Armed

with this methodological outline, we now proceed to discuss the particular

algorithms developed.

Remark on Modelling. We assume here that our mathematical model,

A4 °, accurately reflects the physical problem of interest, denoted A4 °°. Our

computational surrogate approach implicitly considers the modelling pro-

cess in two stages: M Oo _ Ad O _ Ad. An alternative, one-stage, ap-

proach, Adoo --, Ad, proceeds directly from the physical problem, M °°, to

a computationally simple engineering model, .A4, without passing through a

large-scale-simulation intermediary, Ado (or physical experiment). We be-

lieve the two--stage approach is preferrable, as the more difficult problem of

physical-to-mathematical translation is conducted at a level which accomo-

dates greater complexity. This greater flexibility should not, of course, serve

as an excuse for less discriminating modelling practices.l::l

3 Modelling Methodology

In this section we consider both validation procedures, in which we assess a

given _(p), and construction-validation procedures, in which we both pro-

pose and assess ,_(p_). As much of [2] is focussed on the motivation, analysis,

and empirical verification of the validation and construction-validation al-

gorithms, we confine ourselves here to a brief summary of the major points.

We restrict ourselves initially to a single output, K = 1; extension of the

theory to multiple outputs is described in Section 5.
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3.1 Validation

3.1.1 Algorithm

The validationalgorithm takes as given: (i)A subproblem, with an input

M-vector, p, an input domain, fl 6 FtM, a (single)output, s 6 _, and an

input-output function,$(p) E L°°(fl).We prefer,but do not require,that

the subproblem satisfythe three complexity conditions CI, C2, and C3, of

Section 2.2.(ii)A proposed surrogate,$(p) :fl---,F_. (iii)A strictlypositive

Bayesian importance function,

p(_) :n --,_+, /n p(_)d_ = I, (20)

which describesthe a priorirelativeimportance ascribed to differentpoints

within the input domain fl. As willbe discussed in Section 4, this impor-

tance function isbest interpretedas a prior"density"forp'(A_).We note that,

for the error statements developed in Section 3.1.2,the importance function

is requiredto ensure input-transformation objectivity.(iv)The maximum

number of S(p) evaluationspermitted, N '_. This parameter describes the

resource limitationassociated with the validationexercise.(v) Two valida-

tion error tolerances,ei,_2 E [0,i]2, the significanceof which willbecome

clearin the validationerrorstatement of Section 3.1.2.

We now summarize the simple Monte-Carlo [14]Model Validation (MV)

Algorithm of [2].We note that thisalgorithm is,in effect,nothing more than

randomization of obvious parameter-space explorationprocedures; however,

the introduction of a probabilisticframework permits an error statement

which marries well with subsequent optimization analyses.

Algorithm MV(S(p), ,_(p_.),p(p),N '_,_i,e2)

I. SET N _" = Af(¢1, ¢2),

ln_2 (21)
N'(zt,_) = In(l - _i) '

2. IF N _ > N'L validation is not possible.

3. FORj ffi 1,...,N _

S1. DRAW Pj ~ p(p)

S2. COMPUTE Sj = S(Pj).
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4. SET Em_, = maxje{, .....N--) Ej, where Ej = [Sj - $(Pj)]. rn

Here X _, f(x) refers to a random vector X with probability density function

f(x_.); we shall indicate a particular realization of a random quantity Y (vari-

able, vector, or domain) as RY. In the MV Algorithm, the P_ are random

vectors, and the Sj, Ej, and Em_, are random variables.

3.1.2 Error Analysis

The output of the MV Algorithm, the model prediction error estimator,

Em_,, is related to the model validation error estimate, el, and the validation

statement uncertainty, ¢2, by a precise probabilistic statement,

Pr{ft _ (22)£EOIIS(E)-,g(p)I_<Em,,) p(p_)dp_ > 1 - el} > 1 - e2,

where Pr{event} is the Probability that event occurs. In words, (22)states

that, with probability greater than or equal to 1 - ¢_, ]S(_p.) - g(p_)l-< Em,_

over a region of f_ of relative weighted volume greater than or equal to 1 -el;

equivalently, with probability greater than or equal to 1 -e2, [8(p) -,_(p)[ >

Em_ over a region of f_ of relative weighted volume no greater than el.

(The probability ensemble here is defined with respect to repetition of the

algorithm: we expect that, in greater than 1 - e2 of all realizations of the

algorithm, [S(p)-g(p)[ _< Em, x over a region of fl of weighted relative volume

greater than 1 - el.)

The critical aspects of the validation procedure are: first, a precise (al-

beit probabilistic) error statement, (22), can be made for a fixed number

of evaluations of $(p_.); second, the sample-size requirement, (21), and re-

sulting error estimate, (22), are nonparametric, valid for any functions S(p)

and S(p_); third, the validation statement, (22), requires no assumptions on

5"(p) or ,_(p_) as to regularity or functional form. Perhaps most importantly,

the error estimate will also prove amenable to a posteriori analysis in the

optimization Context (see Section 4). The error statement (22) is readily

interpreted in the probably approximately correct framework developed for

classification problems in the theory of learning [12,i3]; in the probably-

approximately-correct context, finite uncertainty -- in our case represented

by _1 and e2 -- permits a precise statement for a fixed sample size.
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The derivation of (22) is given in [2] in terms of order-statistic tolerance

limits [16,41,42]. We indicate here an alternative derivation, based on bino-

mial considerations, that has the advantage of direct (multinomial) extension

to the multiple--output case (see Section 5). We define FE to be the (perforce

increasing, though not necessarily strictly increasing, nor continuous) cumu-

lative distribution function of the random variable E = IS(P)- S(P)], where

P is a random vector with probability density p(p). The 1 - el quantile of

E, e1-,1, is then defined by FE(el-,1) = 1 -_1 (more precisely, e1-_1 is the

minimum z such that Fe(z) >_ 1 - el). Lastly, j_, is any j E {1,..., N _}

for which E_ = Em_. Then, if T__,i = {p efl [ IS(p) - $(p)[ < et-c, },

Pr{Vj E (1,...,NV_}, Pj E _-,, } _< (1-el) iv'° . (23)

It follows that at least one P_ will lie in ft \ T__,, = {p e f_ I IS(p) - s(p)l
el-,_ } with probability greater than or equal to 1 -(1 -el) Iv'*. Furthermore,

if at least one Pj lies in fl \ T__,_, then, since Em_, > E._, Vj E {1,..., N_*},

Pj,,,. in particular will lie in f_ \ T__,_, and thus FE(E_,) > 1 - e_. Finally,

recognizing Fs(e) = f{e_nllSiel_g(e)l<_.,}p(p) dp, and substituting from (21)

(1-el) N'" = e2, we obtain (22). This binomial derivation of (22) is essentially

a classification argument; not surprisingly, the sample-size requirement (21)

also appears in [13].

The origin of uncertainty in (22) is a random region

u = {p_.•  llS(e) - g(e)l >

1 - _2 probably of relative weighted volume less than or equal to el, of unde-

termined location and shape, over which the surrogate misfit, IS(p) - S(p) l,

is unknown. The usual confidence interval-confidence level balance inherent

in (21) has an interesting interpretation: if we consider - In e2 to be how well

we know the simulation behavior, and -1/In(1 - el) to be how much of the

simulation behavior we know, then, for a fixed number of appeals to S(p),

N w, (21) implies that the product of how well and how much is fixed (in fact,

equal to N_*). If we choose the deterministic limit, in which we tolerate no

uncertainty (e2 ---* 0), then how well we know the simulation behavior tends

to infinity, but how much of the simulation behavior we know tends to zero:

we know the simulation behavior only at the points sampled, which is a set

of measure zero. By permitting finite but controlled uncertainty in how well,
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surrogatesaccomodatea finite how much: surrogates - probable but global

-- bridge the gap between direct computation, which is sure but pointwise,

and analytical methods, which are sure and global.

The balance between el and _2 is not "symmetric," however. In particu-

lar, _1 "_ -In e2/N w as N v_ ---. oo for _2 fixed, corresponding to rather slow

algebraic decay. For example, for N w = 22, we can choose el = .1,e2 = .1;

doubling the number of evaluations to N '_ = 44 reduces el by only a factor
N va Nvaof two, el = .05, e2 = .1. In contrast, e2 " e -'x as _ _ for el

fixed, corresponding to rapid exponential decay. For example, again begin-

ning with N _" = 22 and _1 = .1,_2 = .1, doubling the number of evaluations

to N "" = 44 permits a tenfold decrease in _2, _1 = .1,_2 -'- .01. It follows

that, with only a modest number of evaluations of S(p_), _ will be sufficiently
small that we can assume with near certainty that/4 is, indeed, of relative

weighted volume less than or equal to el; the remaining uncertainties are the

location of U, and the surrogate misfit, IS(p) - ,_(_p.)l, over/4.

Remark on Dimensionality. Our algorithm, sampling requirement (21),

and error estimate (22) apply independent of input-vector dimensionality,

M. However, this generality is deceptive; as M increases, although the rel-

ative Vol/ame of/4 remains invariant, /4 will reflect increasingly Significant

excursions in individual components of the input vector (e.g., compare the

side length of a square and cube of the same volume). This implies that

our technique will not be viable for too many subproblem inputs (although

the number of design variables may be large). Surrogate techniques should,

however, be extensible to problems of shape optimization [40], which are

essentially infinite-dimensional, if geometrically motivated correlations be-

tween the inputs are introduced in order to reduce -- through p(p) -- the

effective volume of the input domain.l::]

3.1.3 Eddy-Promoter Example

We apply the validation procedure to the eddy-promoter Nusselt number,

Q(a, R). In order to evoke the MV Algorithm, the prerequisites listed in Sec-

tion 3.1.1 must be supplied. The necessary quantities are, in fact, all defined

in Section 2.3, save the proposed surrogate, Q(a, R), the importance func-

tion, p(p_), the maximum number of evaluations, N e'_, and the uncertainty

tolerances, el and _2. For our purposes here we simply select for the surro-
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gate _(a, R) = 1, which corresponds to the Nusselt number for conduction in
the channel in the absence of the eddy-promoters and any flow. (This simple

surrogate is chosen for lack of a better heuristic; however, this example also

illustrates application of surrogate procedures to test global "stability," or

sensitivity, of a solution -- in this case the conduction solution -- to vari-

ations in the design variables.) We take the importance function, p(p), to

be uniform over the triangular input domain, reflecting no prior knowledge

as to which parts of the domain will prove more interesting in the ultimate

optimization a,pplication. Lastly, we set N _ = 44,¢, = .1,_2 = .01 (by

construction, N _a = Af(s, = .1, e2 = .01) = 44 = N'").

Implementation of the MV Algorithm is now straightforward. First, we

employ a standard acceptance-rejection Monte--Carlo method [14] and a con-

gruential pseudorandom number generator [43] to produce N _" = 44 input

points which are randomly and uniformly distributed over the input domain

f_'P; the input points, {aj, R)},j = 1,..., N _', resulting from one realization

of this process are shown in Figure 4. Next, the Nusselt number is computed

at each of the input points, qj = Q.(aj, R)),j = 1,..., N "_, following the field

subproblem evaluation procedure described in Section 2.3. Lastly, we com-

pute _Eq,_,, = maxjeo .....u.*} [qj- _(aj, Rj)[--- maxje{1 ..... N ca} IqJ- 11; for the

realization shown in Figure 4, we find !REq,_x = .236. We thus conclude that,

with confidence level greater than .99, the discrepancy between Q(a, R) (the

Navier-Stokes solution) and Q. = 1 (our simple surrogate) is less than .236

over more than 90% of flEP. The error in the surrogate is, expectedly, rather

large, confirming that the flow departs significantly from conduction within

the design space fl *P. To capture this departure in greater detail, we need

to consider construction-validation procedures.

3.2 Construction-Validation

3.2.1 Algorithm

The construction-validation algorithm takes as given: (i) A subproblem,

with an input M-vector, p, an input domain, f_ e RM, a (single) output,

8 6 JR, and an input-output function, S(/_) 6 L_(f_). (ii) A modelling

(approximation) procedure,

A: (flx lg/) _' ---, L°°(fl), (24)
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which, given79input-output pairs, E_' = {(P-I' S(.P.Pl)) .... , (p.p.s,,S(p_,))}, gen-

erates the surrogate rule, ,_(p). (iii) A Bayesian importance function, p(p),

satisfying (20). (iv) The maximum number of S(p) evaluations permitted,

N'". (v) Two validation error tolerances, el,e_ E-[0, 1] 2. (vi) The Model
Validation Algorithm of Section 3.1.1.

We now summarize a simple Monte-Carlo Model Construction-Validation

(MCV) Algorithm based on random data,sets [2].

Algorithm MCV(S(p_.), p(p_), N "', e_, e_)

1. COMPUTE N °" = .Af(e,,e2) from (21).

2. IF N _ > N "', QUIT; ELSE SET N c°("'tr'ct_°') = N e" - N ,,'_.

3. FOR j = 1,...,N _° (random dataset):

S1. DRAW Pj -_ p(p)

$2. COMPUTE Sj = S(Pj).
4. SET S(p)= A({(P,,S,),...,(E.sv,o, SN,,)}).

5. CALL MV(S(p),S(p),p(p),N"',¢_,¢:) --. Em_. 0

(For simplicity of presentation we indicate that the first N c° input points

serve for construction and the last N "_ input points serve for validation; in

practice, a sample of N "_ input points is drawn and then randomly parti-
tioned into construction and validation subsets.) The constructed model and

model prediction error estimator, Emax, satisfy our probabilistic validation

statement, (22). Although the S(p_) are, in fact, random, for the purposes of

this paper we shall condition all results on a given model ,_(p).

The MCV Algorithm presented is rather crude and inefficient. First, we

would prefer to compare and select amongst different surrogates, choosing

that model which incurs the smallest model prediction error estimate or

which is computationally least expensive [5,6]. Second, we would like to

adapt to information generated during the c0nstruction-vaHdation process;

a sequential approach offers clear advantages, permitting the algorithm

and the appeals to the expensive S(p) to terminate when the (or a) model

prediction error estimate is sufficiently small. Both of these improvements
are made possible by the multiple-output extension described in Section 5.
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3.2.2 Classes of Models

Models can be characterized in several ways: by data.set -_', determinis-

tic or random; or by procedure, A, "graybox" or "blackbox." Although the

modelling problem would appear to be a routine exercise, several factors com-

plicate the process. First, the domain fl will often be irregular, precluding

simple tensor-product techniques. Second, the input vector and domain, fl

may be of high dimension, M: most complex-geometry interpolation proce-

dures developed for partial-differential-equation applications in two or three

space dimensions are increasingly cumbersome or computationally intensive

with increasing space dimension; local, linearized models commonly used for

multivariate response surfaces are inappropriate for our (global) purposes.

Third, random datasets offer certain advantages within the surrogate con-

text: scattered-data approximation procedures [17] are considerably more

problematic than ordered datasets.

We begin by comparing the relative advantages (marked with a +) and

disadvantages (marked with a -) of deterministic and random datasets.

First, deterministic datasets: (+) ensure the anticipated distribution is real-

ized; (+) can exploit existing datasets; (+) permit a range of well-developed

approximation procedures (tensor-product, "finite-element"); (+) permit a

priori regularity-based approximation--error estimates; (-) extend with some

difficulty to complex f_, in particular for larger M; (-) preclude recycling of

datapoints for (perforce random) validation (see [2] and Section 5). Random

datasets: (-) exhibit fickle "distribution"; (-) disqualify existing (determin-

istic) data; (-) permit only scattered-data approximation methods, such

as Voronoi methods [2,44], modified Shepard techniques [17,45], and radial-

basis-function approaches [11]; (-) permit only limited a priori regularity-

based approximation error estimates; (+) extend readily to complex f_; (+)

extend readily to larger M; (+) permit recycling for validation.

We also briefly compare graybox and blackbox modelling approaches.

Graybox models are intended to reflect prior information as to the antici-

pated form of the phenomenon under consideration. The resulting model

is "parametric," involving a finite number of to-be-determined basis co-

efficients representing a fixed-dimensional approximation space. Blackbox

models are intended to be largely unbiased as to possible functional form,

though clearly some minimal regularity assumptions are required. Black-

box models are preferrably "nonparametric," permitting the approximation
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of arbitrary functions to arbitrary accuracy by consideration of a family of

approximation spaces of increasingIy large dimension. Graybox and black-

box approaches can be gainfully combined as blackbox-corrected graybox
models.

In [2] we develop a random-dataset Voronoi-based piecewise-constant

blackbox approximation procedure for complex domains which extends di-

rectly and efficiently (linearly in complexity) with increasing input dimen-

sion, M; the technique is applied to a problem of stress concentration in

linear elasticity. Unfortunately, although the Voronoi method, which is ef-

fectively a piecewise constant finite element approximation over convex tiles,

does enjoy certain approximation properties, the method is too low-order

to make effective use of the perforce limited datasets available for surrogate

construction. In the current paper we choose for our construction procedure

the two-dimensional implementation of the scattered-data (random dataset)

modified Shepard method, A _ QSHEP2D (ACM Algorithm 660, [45]). At

present both the Voronoi and Shepard methods are "Lagrangian," based only

on function values; as numerical and automatic differentiation techniques

[46,47] become better develo-pe_d, "Hermitian" approximations incorporating

sensitivity derivatives may prove more efficient. General multivariate (large-

M) approximation theory remains an open research area.

3.2.3 Eddy-Promoter Example

We now apply the construction'vaiidation procedure to the eddy-promoter

flowrate and Nusselt number, _(a, R) and Q(a, R), respectively. In order to

evoke the MCV Algorithm, the prerequisites listed in Section 3.1.1 must be

supplied. The necessary quantlt-ies are all defined in Section 2.3, save the

approximation procedure .,4, the importance function, p(p), the maximum
number of evaluations, N e_, and the uncertainty toleran_:-es, el and e2. As

described in Section3_2.2,we use the Renka [45] impiementa-t_on of the modi-

fied Shepard method as our construction procedure. We take the importance

function, p(p_), to be uniform over the triangular input domain, reflecting

no prior prejudice as to areas of potentially higher interest. Lastly, we set

N _ = 44,el = .1, and e2 = .1 (N va = A/'(el = .1,e2 = .1) = 22, and thus

N_o= N,_* = 22).

Implementation of the MCV Algorithm is now straightforward. First, as

in the MV Algorithm, we employ a standard acceptance-rejection Monte-
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Carlomethod and a congruential pseudorandom number generator to pro-

duce N _" = 44 points which are randomly and uniformly distributed over the

input domain ft rP. Then, the flowrate and Nusselt number are computed at

each of these input points, {gj,qj} = {(7(aj, R_),Q(aj,Rj)},j = 1,...,N _,

following the field subproblem evaluation procedure described in Section 2.3.

Next, these N _ = 44 input-output pairs are randomly partitioned into two

subsets, a construction set of size N c° = 22 for Step 4 of the MCV Al-

gorithm, and a validation set of size N _" = 22 for Step 5 of the MCV

Algorithm. Finally, the surrogates are formed and tested. Our construc-

tion method is slightly modified to include prior information: QSHEp2D is

evoked in Step 4 not with N c° points, but with N _° + 2 points. The two ad-

ditional contributions comprise a "plane-Poiseuille-flow" input-output pair,

({a_R} = {0,0},9 = 2/3), ({a,R} = {0,0},q = 1), and a prior-work eddy-

promoter Tollmien-Schlichting input-output pair, ({a,R} = {.5,.2},9 =

.311), ({a,R} = {.5,.2},q = 1.12). (Although the Nusselt number for the

extensively studied {a, R} = {.5, .2} geometry [35-37] can be estimated from

published data [35], we prefer to exactly recompute 9 and q for the precise

boundary conditions of the current paper.)

For the particular (single) train-test realization of Figure 5, we obtain

the flowrate and Nusselt number surrogates shown in Figure 6, and model

prediction error estimates for the flowrate and Nusselt number of REg,=, =

.035 and RE_x = .092, respectively. We thus conclude that, with confidence

level greater than .90, the discrepancy between _7(a, R) (the Navier-Stokes

solution) and _ (our surrogate) is less than .035 over more than 90% of f_P;

similarly (but not jointly, see below), with confidence level greater than .90,

the discrepancy between Q(a, R) (the Navier-Stokes solution) and Q (our

surrogate) is less than .092 over more than 90% of ft _P. Discussing first the

flowrate, we see from Figure 6 that, not surprisingly, for our fized pressure

gradient, the flowrate decreases for cylinders either farther away from the

wall or of larger radius: both of these variations increase the drag on the

eddy-promoter. The flowrate surrogate is rather accurate, with a model

prediction error estimate of only .035 over an observed flowrate range of 0 <

9 < .667. Turning now to the Nusselt number, we see that the largest Nusselt

number obtains for the larger-cylinder steady wavy mechanism, but that

significant transport also occurs for the unsteady Tollmien-Schlichting mode.

The Nusselt number surrogate is less accurate than the flowrate surrogate,

with a model prediction error estimate of .092 over an observed Nusselt
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number rangeof .764 < q < 1.186.

The reader will notice that the input points are the same for the validation

example of Section 3.1.3 (see Figure 4) and construction-validation example

(see Figure 5) of the current section; furthermore, the flowrate and Nusselt

number are both validated on the same set of input points. In essence, we are

exploiting the databoard concept (see [2] and Section 5), in which a single

set of input points is recycled for different models, outputs, or optimization

studies. Note however, that, in the Current single-output context (K = 1),

each example must be treated as a separate problem -- the sample--size

requirement (21) and associated error estimates (22) are not joint. In Section

5 we describe the simple modification which permits us to state joint error

estimates for multiple outputs validated over a common input set.

4 Optimization Purposiveness

4.1 Surrogate-Based Optimization

We recall from Section 2.4 that the essential aspect of surrogate optimization

is the replacement of the actual objective function, (_(p,__) = ¢(_(p); p; h),

with a surrogate objective function, (_(p,__) = ¢(_(P_.); P_;h). Within this

broad framework, however, several different approaches are possible. First,

one can proceed in an "unvalidated mode," in which one tests surrogate pre-

dictions only at surrogate-proposed design points. This approach has the

advantage that all points are dedicated to construction, but the disadvan-

tages that: first, even if the surrogate is accurate at the proposed design

point, one has no assurances as to the accuracy of the surrogate at other

input points upon which selection of the design point may be conditioned

(e.g., through gradient information or simple rejection); second, if the surro-

gate is not sufficiently accurate at the proposed design point, an appropriate

course of action is not clear. A second approach, '_iearn-by-doing" (e.g.,

[48]), performs construction-validation during theoptimization process; that

is, the surrogate model input sample reflects the localstructure of the ob-

jective function. The learn-by-doing approach has the advantage that the

importance function is, perforce, relevant to the]ocal search process, but the

disadvantage that the surrogate developed for one objective function may

be inappropriate for a subsequent optimization study in which the objective
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function has been modified.

We pursue here a third approach, a "Bayesian validated" approach, in

which the validation importance function, p(p_.), serves to indicate the antici-

pated relative relevance of points within the feasible design space fl; ideally,

in a parent optimization project involving numerous optimization studies

parametrized by A_.,p'(A_) would be "distributed" according to p(p'). It is

critical to note that we rely on this definition to motivate, but not to jus-

tify, the choice of p(p_); techniques for determining the de facto influence of

p(p) on any single optimization study (that is, particular A__)are presented

in Section 4.3. The Bayesian validated approach permits better a posteri-

ori error estimates than the "unvalidated mode," though at the expense of

fewer points for construction. (In fact, validation points can, subsequent to

validation in Step 5 of the MCV Algorithm, be included in a revised con-

struction, however the resulting model no longer satisfies a rigorous error

statement.) The Bayesian validated approach ensures greater flexibility than

the "learn-by-doing" approach, though at the cost of lower relevance for any

particular study. In summary, the Bayesian validated approach is probably

better suited for initial, global studies than for final, local designs.

4.2 Monte Carlo Algorithm

Our surrogate-based optimization algorithm takes as given: (i) A subprob-

lem, with an input M-vector, p_, an input domain, f_ E _M, a (now possibly

multiple) output, s_ E _K, and an input-output function, _.(p) E L°°(f_) K.

(ii) A modelling (approximation) procedure, .A(-_), as described in Section

3.2. (iii) An optimization evaluation procedure, ¢(s_.;[; A_) : _K x _M x A --*

_. (iv) A Bayesian importance function, p(p), satisfying (20). (v) The max-

imum number of ,5'(p) evaluations permitted, N "_. (vi) Two validation error

tolerances, e1,¢2 E [0, 1] 2.

We now summarize the Surrogate-Based Optimization (SBO) Algorithm.

Algorithm SBO(¢(s; p_;A.), p(p_.), N'", e_, ¢2)

1. COMPUTE N "_ = Af(¢l,e2) from (21).

2. IF N "_ >_ N *" QUIT; ELSE SET N c° = N _'_ - N '_a.

3. FOR j = 1,...,N*_:

S1. DRAW P_j ~ P(E)
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$2. COMPUTE $i = S(P__).

4. SET _(p)= .A({(P,,S,),,.,, (P_,o,SN,o)}).

5. FOR _ = 41,_,_2,_,_a,...

{ 6. FIND _mi.(A_) and _*(A.), where

= < O(g(a);e; v/9 n. (25)

7. SET E_max = maxje{Noo+l .....N,.} E_, where

= I¢($,;£j; - P ;2 )l •

8. COMPUTE a posteriori estimates (see Section 4.3).

9. CONSIDER adaptive refinement (see Section 4.4). }O

(For simplicity of presentation we indicate that the first N _° input points

serve for construction and the last N "_ input points serve for validation; in

practice, the sample of N "_ input points is randomly partitioned into con-

struction and validation subsets.) The _,,_,,(_) and _*(_) of (25) will be de-

noted the "surrogate minimum" (more precisely, the global minimum of the

surrogate objective function) and the (or a) "surrogate minimizer," respec-

tively; Cmi,(h) and p'(_) of (2) will be referred to as the "actual minimum"

(more properly, the minimum of the actual objective function, ¢(/9, 4)) and
"actual minimizer," respectively.

We make several comments concerning the SBO Algorithm. First, the

._..._of Step 5 are selected based on currently available information, including,

perhaps, the results of previous optimization studies (that is, for _", n < m).

Second, we remark that the surrogate objective function is constructed only

indirectly; that is, rather than directly construct the objective function out-

put from ,A applied to (p, ¢(S(p);p; h)) pairs, we first construct surrogates,

_.(/9), for the "intermediate physical outputs," ff_(p), in Step 4, and then

simply evaluate ¢(_.(p); p; h) in Step 6 and Step 7. For example, for the

eddy-promoter heat exchanger, we construct (7) not directly from the sam-

pled data, but indirectly from the intermediate surrogates for flowrate and

Nusselt number described in Section 3.2.3. We prefer this two-stage ap-

proach to direct construction of the objective function because: each new _'_

does not require re--appeal to a construction procedure; we are more likely

to have prior information for the physical quantities than for an artificially
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synthesizedobjective function. Third, we note that, despite the indirect

construction-cum-evaluation of the surrogate objective function, we directly

validate the surrogate objective function in Step 7, that is, we directly com-

pute the errors in the objective function rather than (less precisely) infer

these errors from the errors in _.(p). From Step 7 and Section 3.1.2 we know

II#(E)__(E)I_<E&=) p(p)d _ _ I -el) _ 1 -e2, (26)

Pr{/u. p(p)d_. <_ _1 } _-_ 1 -- _2, (27)

where/4# = (p_.e ft I I¢(p_.;_) - _(P_;_)] > E#_.}. These (effectively single-

output) objective function prediction error estimates are required for the a

posteriori analysis described in Section 4.3.

We close this section by remarking that our algorithm is related to, but

significantly different from, several other stochastic optimization procedures

[14]. First, as compared to the simplest random search procedure, in which

the minimum is approximated as the minimum of a random sample, our

approach offers two advantages: by constructing and subsequently minimiz-

ing a surrogate, we can exploit whatever prior information may be available

for, and whatever continuity may be present in, the objective function; the

surrogate reveals internal error and sensitivity estimates not apparent from

the bare "nodal values" used in the random search procedure. Second, as

compared to multistart techniques, in which a random sample serves as the

starting point for many parallel local (e.g., gradient-based) minimization

problems: the multistart technique shares the disadvantages (but also ad-

vantages) of direct insertion as regards each local search; the probabilistic

estimates for the multistart technique, although ostensibly similar to our

validation statements, are in fact expressed in terms of the (unknown) size

of the basin of attraction associated with the global minimum.

4.3 A Posteriori Estimates

We discuss in this subsection what can be said of a definitive (or almost

definitive) nature following surrogate-based optimization. Our goal is to un-

derstand, for any given single realization, the influence of the selected impor-

tance function, p(p), on the reliability of the surrogate--based optimization
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process;our notion of successis thus very different than that adopted in
[12], in which the quality of the surrogateis quantified only for the caseof
repeatedtrials accordingto the initially prescribed importance function. The

a posteriori estimates of Step 8 serve in Step 9 first, to ascertain if the sur-

rogate minimum is acceptable, and second, if the surrogate minimum is not

acceptable, to guide subsequent adaptive improvement efforts. It is critical

to note that, consistent with the notion of an expensive subproblem, all a

posteriori estimates in Step 8 require no new appeals to S(p_).

4.3.1 General Case

We state our result,present a briefformal derivation,and discuss the theo-

reticaland practicalimplications.To begin, for any r E (I,I/el),we define

Xr to be the set of allclosed domains, _, in ft for which J'np(p.)dp= re1.
We then set

6 = nex,minmear_{_(p_) - <_,_n} , (28)

ms= arg min[ma x{'_(p)-_mm}]. (29)
7_EXr _

In essence, the sensitivity region R.6 is that (or a) region of relative weighted

volume tel for which the deviation of the surrogate objective function from

_mi, is minimal; this minimal deviation, 6, reflects the sensitivity of the sur-

rogate objective function to variations in the design variables in the vicinity

of the surrogate minimizer. We can now express a form of "lower semi-

continuity:" with probability greater than 1 - e2,

3p_ E 7_6, Po, such that _(P--o' A_) < _. + _, (30)

where _v, the "predictability gap," is the random variable

= E_, + 6. (31)

Note that (30) says nothing concerning the discrepancy between the surro-

gate minimum and actual minimum or the surrogate minimizer and actual

minimizer; without further hypotheses on _(p; A_)and _(p; A_), no such state-

ment can be made. Condition (30) does, however, say something concerning

the reliability of the surrogate prediction: within a constructable region, _6,

there exists a point (in fact, many points) at which actual system performance
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is within w of the surrogate-predicted optimum. Our underlying strategy

is to strive for a global minimum of ¢(p; _), but to require reliability in the

surrogate prediction; our approach is thus, at least philosophically, related

to the Taguchi approach to quality control [18,19].

To derive (30), we first note that, from (27), with probability greater than

or equal to 1 - e2,/4 # is of relative weighted volume less than or equal to el.

If U # is of relative weighted volume less than or equal to el, then R6 \ L/#

must be nonempty, since R6 is of relative weighted volume strictly greater

than el (recall r > 1). Then, for any point p' in T¢.6\//#,

I'_(e';_) - _(_.';_-)1 I'_(g;-_)- '_Cp';_) + _(g;-_)- '_(_.';_)1
-< I_(g; _-)- $(g; __)1+ I_(g; _-)- _(_'; 4)1.

As [_(p';_) - _(p';_)[ < E_,,,,¢ (recall p' ¢ //_), and [_(p';_) - _(_*; _-)1 -< 8,

(30-31) directly follows, with Po = P" From this derivation it is clear that

(30) applies to each A..._ of Step 5 separately, not jointly; however, the SBO

Algorithm is readily extended such that (30) is jointly valid (see Section 5).

In order to illustrate (30), we consider a simple model problem with

M = 2, p E fl = [-1,1] x [-1,1], and p(p) = 1/4. We presume that the

result of the SBO Algorithm is a surrogate objective function,

_(p)=p_+w2p]+l (w>l), (32)

°_' with minimum and minimizer _, = 1 and _" = {0, 0}, respectively, and pre-
diction error estimate _RE_,_,x. It is then readily computed that 8 = 4relw/rr,

with _s given by the elliptical region centered at the origin with major (pl)

and minor (p2) axes of v_ and v/g/w, respectively. The predictability gap is

thus _Rw = _E_,,x'_ + 4relw/r. It is clear, since we have not even defined the

actual objective function, _(p;_), that this analysis is based entirely upon

appeals to the surrogate. This model problem is not, of course, completely

arbitrary; the M-dimensional generalization of the objective function (32) is

a local representation of any sufficiently differentiable objective function near

an interior minimizer.

Turning now to the implications of (30), we remark, first, that (30) quan-

tifies the effect of a poorly selected p(p): we expect that 8, 1_61and w will

be inversely proportional to p_'(__)).-Second, we understand the origin of

the predictability gap, w, as distinguishable construction, Em_, and vali-

dation, 8, contributions. We expect that, as N _° and N _° _ _(e2 fixed),
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E,_x, _ and hence w will tend to zero; furthermore, for any particular study

at finite N ev, the ratio ( = RE¢,_/_ provides valuable "construction versus

validation" guidance for adaptive improvement (see Section 4:4). Third, the

continuity statement (30) includes a notion of "Lr-sensitivity," which we de-

fine as the sensitivity of ¢(p; A_.)to variations in p. (We contrast Lr--sensitivity

to ")_-sensitivity," which we define as the sensitivity of design points, such

as (b,,an(__) and p'(__), to variations in 4.) Our "l_o-sensitivity" result should

prove quite useful in preliminary optimization studies: if w is acceptably

small, and 7¢6 is acceptably located, the precise design point need not be

specified, thereby maintaining maximal flexibility in the ensuing design pro-

cess. This flexibility is particularly important when the optimization prob-

lem, (2), reflects only one subsystem of a larger, more complex endeavor [49].

Remark: Random Search Revisited. It is readily shown that, with

probability greater than 1 - ¢2r (as ¢1 _ 0), a validation input point, P_,

resides in TQ (and hence "Rs \ U_). Thus, even in the worst case, in which

we simply set Po of (30) to RPj, the surrogate approach reproduces the sim-

ple random-search result, and, additionally, provides: valuable p-sensitivity

information through condition (30); convergence guidance through the quasi-

convex analysis of the next section.O

4.3.2 Quasi-Convex Case

We consider here the case in which 12 is convex, and q)(p;A_) and _(p;A)

are quasi-convex in the first argument. (A function f(p): ft ---, _ is quasi-

convex if: Vc_, p,, _ e ([0, 1], 12,12), f(vtp_ + ( 1 -a)_) < max[f (p,), f(p2)]; or,

equivalently, the level sets, {p E 12 If(a) -< are convex[25].)We first state

our main result: given a "separating value" random variable A = 2E_x +

and an associated random "buffer zone,"

= {a e I¢ - > A},

a random "containing region," E, can be constructed in which, with prob-

ability greater than 1 -¢_, an actual minimizer, p', must reside; further-

more, as E_, and el tend to zero, the region E shrinks to _', the surrogate

minimizer. The E-construction depends only on p(p_),r, and the geomet-

ric properties of _6 and 13z. In this section we: formally derive the E-

construction for a general one-dimensional (M = 1) optimization problem;

3O

m

=



=

state the E-construction for a particular two-dimensional (M = 2) model

optimization problem; and discuss the implications. The derivation of the

general M = 2 E-construction is given in [32]; development of the general

M > 2 E-construction, though tractable, is rather involved and not yet

complete. All results presented are for the case of uniform p(p).

We now proceed with the E-construction for the general one-dimensional

(M = 1) quasi-convex optimization problem. We introduce the (perforce

convex) regions fl = [p_,p+], T¢._ = [p_-,p+], Ya = [p_,P_) U (P+,p_], and

E = [PX - e,, P+ + _1] shown in Figure 7 (note Pa_ are random variables);

for clarity of exposition, we assume that p_- > P_, p+ < P+, and P_, >

p_ + el,P+ < p+ -el. First, from (27) we know that, with probability

greater than or'equal to 1 - e2, H # is of total length less than or equal to

et; note that//# need not be convex. If H # is of total length less than or

equal to e_, then: there exists a point p' in R6 \ H#; for any point p" in

fl \ E, there exists a point p" in Ba n E \/.4 # for which p" < p" < p' or

p' < p" < p'. For example, to prove the latter, take (say) p'" > P+ + _i, and

assume that no point p" in 8a n E \ H # exists such that p' < p" < p"'; but

then, (P_,p'") C ii #, and since p" > P+a + el, we arrive at a contradiction.

We next claim that, for p' in "R.6\/4 # and p" in/3a n E \ b/#,

¢(p"; __) > _,,a, + Em#_, + ¢5 (33)

and

> (34)

Inequality (33) follows from

I (F;A) - k)l = - + A) - k)l
> I_(_;_)- _(P";_)I- I_(P";_)- _(p";-_)l,

and I_(_;_)- _(P";_)I > 2E_ + 8, [_(p";_)- _(P";-_)I < f_ (recall

p" ¢ L/#). Inequality (34) follows from (33) and the results of Section 4.3.1.

Lastly, the event (say) p' < p" < p" (p' in _6 \ /4#, P" in /_a N E \ L/#, p'"

in f_ \ E) implies, from the inequality (34) and quasi-convexity, _(p"; _) <

max[_(p';_), _(p"';_)], that _(p";_) can not be greater than t,p ;_); thus,

there exists a minimizer of _(p; _) within E. This proves the desired result,

and constructs the requisite region, E.

We next pass to the two--dimensional case, and present the E-construction

for the particular model problem discussed in Section 4.3.1: M = 2; p _ f_ =
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[-1,1] × [-1,1]; p(p) = 1/4; surrogate objective function (32); and predic-

tion error estimate, _E_,,x. As described in Section 4.3.1, ,5 = 4re:w/r, with

R.6 given by an elliptical region with (major(pl),minor(p2)) axes v_(1, l/w).

Following an analysis conceptually similar to -- though technically more

complicated than -- our analysis for the one-dimensional optimization prob-

lem, we find that, as 6 _ 0, _8,_ is the exterior of an ellipse-like (though not

exactly elliptical) region of (major(pl),minor(p2)) axes v__(1,1/_),

and _C is an ellipse-like region of (major(pl),minor(p2)) axes

v_{_ Jr"2_ + 2/r[1 + _1 + rv/l" + 2(_']}(1, l/w) ,

where ¢ = _E#m,:,/6. Note that, as _E¢_. and 6 --* 0, _/(: shrinks to __'.

The implications of our results are clear. First, from the theoretical per-

spective, we obtain convergence of the surrogate minimizer (and probably,

with convexity, the surrogate minimum) to the actual minimizer (actual min-

imum) as N e_ ---* oo. Second, from the practical perspective, we provide

a natural framework in which to pursue search-domain reduction strategies

[50,51]: an initial surrogate-based optimization study over fl provides the de-

sign space, _, for subsequent adaptive improvement; with high confidence,

_K: contains the requisite global minimizer. This search-reduction approach

is, in practice, hampered by the pessimistically large regions K: that result

from the rather minimal assumptions placed on ¢(p; 4) and ¢(p.; 4).

4.4 Adaptive Improvement

IF (i) on the basis of the surrogate minimum _,(_), the surrogate mini-

mizer, _.°(h), the surrogate prediction error estimate, _E_#_,, the predictabil-

ity gap, _v, the sensitivity region, 7_6, and the containing region, _K:, the

surrogate minimum and minimizer of Step 6 are deemed unacceptable, AND

IF (ii) further appeals to _.(p) are permitted (e.g., N '_ reflects only part of

the total resource allocation for the entire project, or additional resources

can be renegotiated given the optimization results to date), THEN a pos-:

teriori estimate-based adaptive improvement can be pursued. (Note that if

(i) is false, then we simply declare success and return to Step 5 of the SBO

algorithm; however, if (i) is true but (ii) is faise, _we must admit defeat. In

the latter case, the a posteriori estimates serve the unpopular but valuable

function of qualifying the surrogate minimum and minimzer.)

32

A

i



Two adaptive improvement branches (from the local bindings associated

with the parent SBO procedure) can be envisioned. In the first branch,

we simply evoke one additional appeal to S(p) to determine actual system

performance at p = _', ¢(S(_.'); _'; __); all existing information implicates _"

as a viable design point, and this possibility therefore merits investigation

before proceeding further. In the second branch, we recursively evoke a

second instantiation of the SBO Algorithm, in which we re-appeal to the

databoard (see Section 5) or expensive simulation 6'(iv) in order to: if _ =

_E_x/15 > 1, devote additional input-output pairs to the validation of new

models (see Section 5) or to the further construction of existing models; if

= _E#_/_5 < 1, devote additional input-output pairs to the validation

of existing models. Re-appeal to the databoard or 6'(/9) will typically be

accompanied by search-domain modification, in which we, say, focus p(p) in,

or relocate _ to, the _K:-neighborhood of the current surrogate minimizer.

Adaptive, or multipass, strategies, in which optimization information

feeds back to the surrogate hypotheses, are clearly a necessity. As in ex-

perimental data collection procedures [7], all diagnostic (here simulation)

resources should not be expended in the first salvo; unfortunately, as for ex-

perimental inquiries, we can hope to proffer only "rules of thumb" as to when

to commit resources. More explicit strategies for, and examples of, multipass

interaction [49] will be addressed in future papers.

4.5 Eddy-Promoter Heat Exchanger

We consider now the eddy-promoter heat exchanger example. The objec-

tive function is given by (8); we choose p(p) to be uniform over f_rP; we set

N ''_ = 44 and el = e2 = .1. The flowrate and Nusselt number interme-

diate physical surrogates are constructed as in Section 3.2.3 based on the

construction sample shown in Figure 5. For the definition vector we take

hEP = _EP.l = {/31 = 10 -z,/32 = .20,/33 = 1.1, t¢ = 2.0}. Proceeding to Step

6 of the SBO Algorithm, we find (for this two-dimensional case by a sim-

ple search) _E, (,_,P.1 ... _.EP.(A__P,, )--rain,-- ) = 993, = (.40, .14) for the surrogate and

surrogate minimizer, respectively; a contour plot of the surrogate objective

function is shown in Figure 8. From Step 7 of the SBO Algorithm we find, for

the particular validation sample shown in Figure 5, _E_x = .0605. Then,

from the a posteriori analysis of Step 8, we calculate (for r = 2) _5= .029, and

thus _m = .090 and _ = 2.14; we show in Figure 8 the region R6 in which,
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from i30), with confidencelevelgreater than 1 - ¢2, we can find a iorP,p_ r,

EP (_EP _. EP,I \such that _ v_o ,_ ) (actualsystemperformance) < _P (_p,1_-_.,_. )+.090. In

Step 9, we re-appeal to the Yavier-Stokes subproblem for pfP = _.rP'(AZP'I)

to obtain _'P(_P'(A__P':); A__r'_) = .253, quite close to the value predicted by

the surrogate objective function.

We now return to Step 5, and reselect A__'_ = {81 = 10-6,B_ = .01,_ =

1.1, n = 2.0}, because (say) the optimum predicted in Figure 8 corresponds

to a pump size which is unexpectedly large. Exploiting the same samples

and intermediate physical surrogates as for the first study (recall the result-

ing estimates are not joint pending the revised multiple-output sample-size

requirement of Section 5), we find, in Step 6 and Step 7, _EP O,_.P.2_--min%_ l

RE_x = .0611 for the surrogate, surro-.190, = (.s0, .v4), and ®
gate minimizer, and prediction error estimate, respectively; a contour plot

of the surrogate objective function is shown in Figure 9. Pursuing in Step

8 our a posteviori analysis, we calculate (for r = 2) _ = .022, and thus

R_ = .083 and ¢ = 2.77; we show in Figure 9 the region Rs in which, from

-_ -_ such(30), with confidence level greater than 1 - e2, we can find a _ ,/_o,

that _.F(pEP A_rF,2) (actual system performance) < __,_ , + .083. Note

that, even if we falsely presume global quasi-convexity, the region R/C in

which the actual minimizer must lie is, disappointingly, essentially f_zP. In

Step 9 we re-appeal to the Navier-Stokes subproblem for p_P = _fP°(_rP'_) to

obtain _(_fP.(_.rr,_); 2_,_) = .194, again quite close to the value predicted by

the surrogate objective function. It is not surprising that, with the increased

(decreased) penalty on pumping power (materials cost), optimal performance

now occurs at a lower flowrate in the vicinity of the global maximum in heat

transfer.

5 Extensions

Classification Procedures. In classification problems we search for a re-

gion of input space in which certain conditions are satisfied; for example,

in the eddy promoter problem, we might be interested in that region of

Qr_ in which the heat transfer rate, {_(a, R), is greater than a prescribed

threshold. In such situations, it is clearly advantageous to replace (say) the

Navier-Stokes equations with a less expensive -- surrogate -- (0, 1} char-
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acteristic function. For noisy classification problems, statistical prediction

rules [9] or neural network approaches [11] prove effective; for deterministic

simulation-based classification problems, we develop in [2] a Boolean Voronoi

construction method and a binomial-tail-statistic [16] validation technique.

Modelling and classification algorithms share much in common as regards

both motivation and formulation, and, in the future, must be combined in

a single procedure, in which a model-based surrogate objective function is

minimized over a classification-based feasible domain.

The Databoard. The databoard concept, developed in [2], permits in-

vestigations defined over different input domains to share data. The tech-

nique, based on simple conditional samplying procedures, is best illustrated

by an example. Consider the second eddy-promoter heat exchanger opti-

mization problem considered in Section 4.4, in which the minimum is near

the {a = 1.0, R = .95} vertex of 9tEP. Assume, however, that the original

design space is defined to be not the triangular l__P, but, rather, the square

domain l]_(,,i_i_t) shown in Figure 10. Upon minimization, the minimizer will
EPno doubt reside on the boundary of l_i , perhaps prompting the investigator

to expand the design space to (say) the full triangle, flrP. In performing

the subsequent adaptive improvement over 12_P, the researcher can: recycle

existing data from griP; evoke new simulations only when 9t_ P is depleted,

or when the requested input point lies in l'l EP \ fl_P; post new simulations to

the databoard for the benefit of future investigations. The concept is readily

expanded to permit rather general input domains and both modelling and

classification studies; furthermore, if raw, rather than processed, simulation

data is posted to the databoard, significant output flexibility can be achieved.

Multiple-Output Validation. We discuss here the generalization of the

Model Validation Algorithm (and, by obvious extension, the MCV and SBO

Algorithms) to the case of multiple outputs, K > 1. In particular, we con-

sider the situation in which we wish to validate K > 1 outputs (e.g., for the

eddy-promoter problem, the flowrate and the Nusselt number) at the same

sample input points, P1,..., P---N,_,

E k = max El, k=l,...,K,
max jE{I ..... N'"}

(35)

E] = [Sk(Pj)-,._k(Pj)[, j = 1,...,N_,, (36)
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where $_(p) and _k(p) refer to the k th component of the _.(p) and _.(p)

vectors, respectively. It is readily shown [32] by muttinomial extension of the

binomial arguments described for the single--output case that, if we simply

replace the sample-size requirement of Step 1 of the MV Algorithm with

N_ _ = ln(_2/K) (37)
ln(1 - el) '

then the K outputs jointly satisfy a validation statement,

Pr{_ -el, ,..., -_.flll,qk(£)_._h(_)l<E_,.}p(_.)dp___ 1 k = 1 K} > 1 -e2 • (38)

Note to arrive at the simple expression (37), certain quantities in the multi-

nomial expansion are bounded. However, the requirement (37) is often pes-

simistic in practice not because of the bounds, which are rather sharp for

K < 1/el, but because most actual output vectors are better correlated than

the worst-case assumption inherent in (37). The remarkable conclusion from

(37) is that only logarithmically more simulations must be performed in order

to jointly validate multiple outputs over a common input set; indeed, if (say)

e2 = .01, K = 100 outputs require only twice the sample size as a single

output (K = 1). This logarithmic dependence further justifies the surro-

gate concept; if, to obtain joint estimates, the sample size grew linearly with

K, the surrogate approach would be not too different from direct insertion

procedures as regards adaptability.

We mention three applications of the multiple--output theory. First, mul-

ticriteria opt im_!zation frameworks can now be addressed. Second, multiple--
/'A 1 A 2optimization studies __ ,_ ...) can be jointly validated so that confidence

can be assured not only in the final study, but in all earlier studies on which

the final study is conditioned: by replacing Step 1 of the SBO Algorithm

with (37), the _Avariation in Step 5 is now jointly justified. Third, if we

interpret the K outputs as the K errors associated with a single physical

output approximated by K different models, (37) permits efficient model-

optimal construction procedures: we replace Step 1 of the MCV Algorithm

with (37); we test several candidate models according to (35); we choose

the best model based on accuracy or cost criteria [5,6]; we are assured, from

(38), that our rank ordering is significant, and that our validation statement

applies to the particular model selected. Sequential procedures can also be

pursued.
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6 Conclusions

Surrogate techniques constitute an attractive alternative to "direct insertion"

for the incorporation of large--scale simulations into engineering optimiza-

tion studies. Simulation surrogates provide direct resource control, support

flexibility in design objectives and specifications, and gainfully accomodate

prior information. Furthermore, the particular construction-validation pro-

cedures proposed here enjoy a posteriori error estimates that permit both

qualification of surrogate results and guidance for subsequent adaptive im-

provement. Much additional work is required, however, if the simulation

surrogate framework is to prove useful in engineering design. In particular,

multipass adaptive refinement strategies must be articulated for both single--

and multiple--optimization-study projects, with emphasis on construction-

validation refinement, search domain reduction and relocation, and gradu-

ated deployment of resources.
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Figure 1: One periodicity cell of the eddy-promoter heat exchanger.
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Figure 2: The eddy-promoter heat exchanger placement-radius design space,f_zP.
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_ c)

Figure 3: Eddy-promoter flow isotherms at one instant in time for (a) {a, R} = (.50, .20},

(b) (a,R} = (.81, .75}, and (e) {a,R} = (.98, .92}; in all cases, Re = 300, Pr = 1,L = 6.666.
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Figure 4: Validation sample (o) for the the simple Nusselt number surrogate _(a, R) = 1,
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Figure 5: Construction (o) and validation (o) samples for the flowrate and Nusselt number

surrogates.
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Figure 6: (a) Flowrate surrogate, _(a, R). (b) Nusselt number surrogate, Q(a, R).
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Figure 8: Contour plot for _P(/_ev; 2_P'_). The surrogate minimum over fl ep is --rain,,.-,_P{)_EP,I,j,_.

.223; the surrogate maximum over fl eP is .550; contours delineate level sets of relative

weighted volume .1, .2,..., .9. The dashed contour encloses _7_ for r = 2.
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Figure 9: Contour plot for _ZP(pEP; AzP,_) The surrogate minimum over C/EP is _mi,(__ ) =

.190; the surrogate maximum over _zP is .385; contours delineate level sets of relative

weighted volume .i, .2,..., .9. The dashed contour encloses _7_6 for r = 2.
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Figure 10: Hypothetical initial, 12_P, and subsequent, f_P, design spaces for databoard

example. Input points for the subsequent study comprise new points (/k) and points recycled

from the initial study (O).
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